78 research outputs found

    Comparison of Selection Methods in On-line Distributed Evolutionary Robotics

    Get PDF
    In this paper, we study the impact of selection methods in the context of on-line on-board distributed evolutionary algorithms. We propose a variant of the mEDEA algorithm in which we add a selection operator, and we apply it in a taskdriven scenario. We evaluate four selection methods that induce different intensity of selection pressure in a multi-robot navigation with obstacle avoidance task and a collective foraging task. Experiments show that a small intensity of selection pressure is sufficient to rapidly obtain good performances on the tasks at hand. We introduce different measures to compare the selection methods, and show that the higher the selection pressure, the better the performances obtained, especially for the more challenging food foraging task

    Learning Collaborative Foraging in a Swarm of Robots using Embodied Evolution

    Get PDF
    International audienceIn this paper, we study how a swarm of robots adapts over time to solve a collaborative task using a distributed Embodied Evolutionary approach , where each robot runs an evolutionary algorithm and they locally exchange genomes and fitness values. Particularly, we study a collabo-rative foraging task, where the robots are rewarded for collecting food items that are too heavy to be collected individually and need at least two robots to be collected. Further, the robots also need to display a signal matching the color of the item with an additional effector. Our experiments show that the distributed algorithm is able to evolve swarm behavior to collect items cooperatively. The experiments also reveal that effective cooperation is evolved due mostly to the ability of robots to jointly reach food items, while learning to display the right color that matches the item is done suboptimally. However, a closer analysis shows that, without a mechanism to avoid neglecting any kind of item, robots collect all of them, which means that there is some degree of learning to choose the right value for the color effector depending on the situation

    Learning Collaborative Foraging in a Swarm of Robots using Embodied Evolution

    Get PDF
    International audienceIn this paper, we study how a swarm of robots adapts over time to solve a collaborative task using a distributed Embodied Evolutionary approach , where each robot runs an evolutionary algorithm and they locally exchange genomes and fitness values. Particularly, we study a collabo-rative foraging task, where the robots are rewarded for collecting food items that are too heavy to be collected individually and need at least two robots to be collected. Further, the robots also need to display a signal matching the color of the item with an additional effector. Our experiments show that the distributed algorithm is able to evolve swarm behavior to collect items cooperatively. The experiments also reveal that effective cooperation is evolved due mostly to the ability of robots to jointly reach food items, while learning to display the right color that matches the item is done suboptimally. However, a closer analysis shows that, without a mechanism to avoid neglecting any kind of item, robots collect all of them, which means that there is some degree of learning to choose the right value for the color effector depending on the situation

    Decentralized Innovation Marking for Neural Controllers in Embodied Evolution

    Get PDF
    International audienceWe propose a novel innovation marking method for Neuro-Evolution of Augmenting Topologies in Embodied Evolutionary Robotics. This method does not rely on a centralized clock, which makes it well suited for the decentralized nature of EE where no central evolutionary process governs the adaptation of a team of robots exchanging messages locally. This method is inspired from event dating algorithms, based on logical clocks, that are used in distributed systems, where clock synchronization is not possible. We compare our method to odNEAT, an algorithm in which agents use local time clocks as innovation numbers, on two multi-robot learning tasks: navigation and item collection. Our experiments showed that the proposed method performs as well as odNEAT, with the added benefit that it does not rely on synchronization of clocks and is not affected by time drifts

    Influence of Selection Pressure in Online, Distributed Evolutionary Robotics

    Get PDF
    National audienceThe effect of selection pressure on evolution in centralized evolutionary algorithms (EA’s) is relatively well understood. Selection pressure pushes evolution toward better performing individuals. However, distributed EA’s in an Evolutionary Robotics (ER) context differ in that the population is distributed across the agents, and a global vision of all the individuals is not available. In this paper, we analyze the influence of selection pressure in such a distributed context. We propose a version of mEDEA that adds a selection pressure, and evaluate its effect on two multi-robot tasks: navigation and obstacle avoidance, and collective foraging. Experiments show that even small intensities of selection pressure lead to good performances, and that performance increases with selection pressure. This is opposed to the lower selection pressure that is usually preferred in centralized approaches to avoid stagnating in local optima

    Assessment of a wide array of contaminants of emerging concern in a Mediterranean water basin (Guadalhorce river, Spain): Motivations for an improvement of water management and pollutants surveillance

    Get PDF
    This study investigates the occurrence and distribution of 185 organic contaminants (regulated pollutants and contaminants of emerging concern; CECs) in surface and groundwater of the Guadalhorce River basin (southern Spain) providing the most detailed dataset regarding organic pollution presented so far in this area. Up to 63 contaminants were detected in a monitoring campaign conducted in March 2016. Most contaminants were detected more frequently in surface water where they generally present higher concentrations suggesting the prevalence of wastewater discharges into streams as the main pollutant sources. In general, hydrophobic CECs presented the highest frequencies of detection and concentrations, which can be a consequence of several factors: (1) hydrophobic compounds show a higher retardation factor, which result, along with a continuous contaminant input, in a widespread and homogeneous distribution. In contrast, hydrophilic contaminants are more easily transported by water flows towards the lower basin and potentially accumulate as driven by groundwater flow and because of low renewal rates in the detrital aquifers caused by re-pumping and irrigation return flows in agricultural lands; (2) hydrophobic CECs studied in this research are mainly personal care products and organophosphate esters flame retardants and plasticizers, which are present in many different products and are used in large amounts; Also, (3) use of biosolids (reclaimed sewer sludge) as fertilizer for crops is potentially an additional diffuse source of organic pollutants in the study area contributing to a widespread distribution, especially for hydrophobic compounds. Obtained results highlight the need to better define the potential risk of non-regulated contaminants in water resources as well as the great impact of untreated wastewater discharges

    Digital Simulation of Bioluminescent Bacteria Cells Tweeting via Quorum-Sensing Molecules

    Get PDF
    In this paper, we propose a computational multiagent model of a bacterial light-producing communication system, termed quorum sensing (QS). Specifically, we propose a bottom-up agent-based approach combined with Ordinary Differential Equations, which abstract the intracellular dynamics, such as a proposed bioluminescence model. Results show that bacteria cells have a metabolism allowing them to grow, reproduce, interact, and cooperate at the population level to exhibit nearoptimal light producing behaviors. The ultimate goal is to develop a self-regulated network in which the rules governing the formation of the network are linked to the internal dynamics of its units without any centralized control. Such a bacterial-inspired networks, can address issues such as mobility, and energy that are key factors for the development of new self-organized network such as mobile Ad-hoc networks

    Screening and Distribution of Contaminants of Emerging Concern and Regulated Organic Pollutants in the Heavily Modified Guadalhorce River Basin, Southern Spain

    Get PDF
    Emerging pollutants have aroused an increasing concern due to their ubiquitous presence in the environment and harmful potential. Both emerging (e.g., pharmaceuticals and personal care products) and regulated organic pollutants pose a serious threat to water quality and their presence and spatial distribution are complicated to address as they can derive from several factors: distribution of point and diffuse sources, environmental conditions, hydrogeological features of the region and inherent properties of the considered contaminants. In this study, a ground and surface water monitoring campaign was conducted in the three main detritic groundwater bodies of an extensive and heavily modified river basin in order to draft an initial description of the occurrence and distribution of a wide range of organic contaminants. In total, 63 out of 185 target pollutants were detected. An attempt to understand the importance of different factors governing the distribution of some of the most frequently found pollutants was made. Antibiotics spatial distribution is potentially influenced by the hydrogeological functioning of the basin modified by hydraulic infrastructures (reflected by hydrochemistry and environmental tracers delta H-2 and delta O-18), not directly related to the distribution of potential sources. The presence of other organic pollutants does not reflect an evident correlation with flow pathways. Differences in contaminant occurrence are potentially attributed to the way pollutants are released into the environment as well as physico-chemical properties

    Characterization of non-intentional emissions from distributed energy resources up to 500 kHz: A case study in Spain

    Get PDF
    [EN] Narrow Band Power Line Communications (NB-PLC) systems are currently used for smart metering and power quality monitoring as a part of the Smart Grid (SG) concept. However, non-intentional emissions generated by the devices connected to the grid may sometimes disturb the communications and isolate metering equipment. Though some research works have been recently developed to characterize these emissions, most of them have been limited to frequencies below 150 kHz and they are mainly focused on in-house electronic appliances and lightning devices. As NB-PLC can also be allocated in higher frequencies up to 500 kHz, there is still a lack of analysis in this frequency range, especially for emissions from Distributed Energy Resources (DERs). The identification and characterization of the emissions is essential to develop solutions that avoid a negative impact on the proper performance of NB-PLC. In this work, the non-intentional emissions of different types of DERs composing a representative microgrid have been measured in the 35–500 kHz frequency range and analyzed both in time and frequency domains. Different working conditions and coupling and commutation procedures to mains are considered in the analysis. Results are then compared to the limits recommended by regulatory bodies for spurious emissions from communication systems in this frequency band, as no specific limits for DERs have been established. Field measurements show clear differences in the characteristics of non-intentional emissions for different devices, working conditions and coupling procedures and for frequencies below and above 150 kHz. Results of this study demonstrate that a further characterization of the potential emissions from the different types of DERs connected to the grid is required in order to guarantee current and future applications based on NB-PLC.This work has been financially supported in part by the Basque Government (Elkartek program)

    Study of the presence and environmental risk of organic contaminants policed by the European Union and other organic compounds in the water resources of a region overlapping protected areas: The Guadiaro River basin (southern Spain)

    Get PDF
    The study presented here is a first qualitative assessment of the occurrence of organic contaminants contemplated and not yet contemplated in European Union environmental legislation in water resources in the little anthropized Guadiaro River basin (70% of its area is covered by natural vegetation), in southern Spain. Water samples were collected from four carbonate aquifers, two detrital aquifers and four surface water courses and were analyzed for (i) 171 organic contaminants, (ii) major ions and (iii) stable isotopes (δ18OH2O, δ2HH2O, δ13CDIC). An environmental risk assessment was conducted through calculation of risk quotients comparing measured concentrations with ecotoxicological data found in the literature. Twenty-five organic contaminants were detected, at least once, including pesticides, pharmaceuticals, drugs of abuse and polycyclic aromatic hydrocarbons (PAHs). Cocaine and its main metabolite were detected in 85% and 95% of water samples, respectively (0.001–0.18 μg/L and 0.004–0.6 μg/L, respectively). Pyrene (PAH) was found in all water samples (0.001–0.015 μg/L) and forest fires were pointed out as a potential diffuse source. Relationship between rivers and aquifers is reflected by the distribution of organic contaminants, essentially the drugs of abuse. Concentration of contaminants were generally higher in groundwater samples, especially from detrital aquifers, potentially due to an accumulation process promoted by irrigation-return flows and by its slow dynamic compared to that of karstic systems. Pyrene concentration was also higher in some springs from karstic aquifers. Hence, calculated risk quotients were in general higher in groundwater, meaning that the threat to surface aquatic systems can grow as aquifers increase their influence on the water courses as the dry season progresses. The relationship between δ13CDIC and most organic contaminants (especially pyrene) reveal the role of the soil as storage media.Funding for open access charge: Universidad de Málaga / CBU
    • …
    corecore